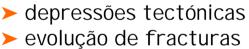
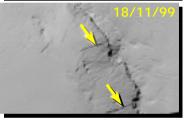
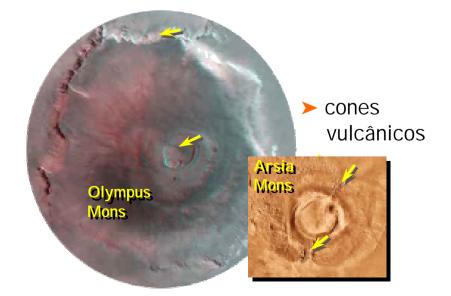
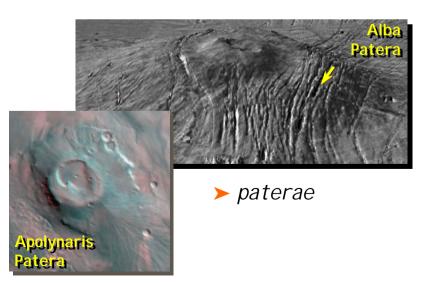
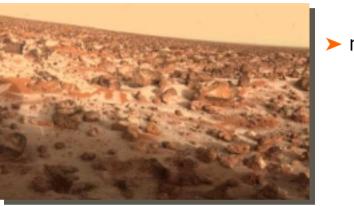

Marte


morfologia associada a processos endógenos

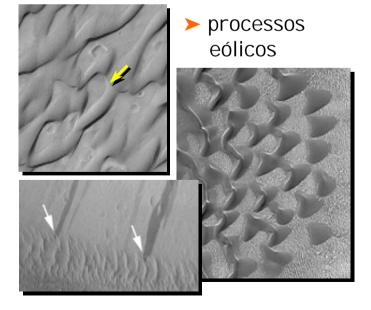








Marte


morfologia associada a outros processos

movimento de terrenos

➤ rególito

MARTE

- Características gerais
 - Atmosfera
 - * CO_2 (95.2%), N_2 (2.7%), Ar (1.6%), O_2 (0.13%), CO (0.07%), H_2O (0.03%)
 - * Ne, Kr, Xe, He
 - Campo magnético fraco
 - * evidência de paleomagnetismo (bandas E-W com anomalias +/-)

Distância ao Sol = 1,52 UA	Rotação = 1,03 dias	Revolução = 686,98 dias
Diâmetro equat. = 6794 km	Massa = $6,419 \times 10^{23} \text{ kg}$	Densidade média = 3,94 g/cm ³
Temperatura = 20°C a -140°C	Gravidade = 0,38 (Terra 1)	Velocidade de escape = 5 km/s

Morfologia

- Terras altas dominantes no hemisfério Sul grande densidade de crateras de impacto (mais antigas)
 - * terrenos modelados por impacto e planícies inter-crateras
 - * bacias (antigas crateras de impacto) Hellas, Argyre, Isidis
- Terras baixas dominantes no hemisfério Norte pequena densidade de crateras de impacto (mais jovens)
 - * planícies de origem vulcânica?
 - * planaltos vulcânicos e vulcões zona equatorial Tharsis e Elysium
 - Montes vulcões
 - Tholus domos vulcânicos
 - Paterae caldeiras

Geologia

- Depressões tectónicas
 - * Valles Marineris (canhões ?)
 - * Chasmata e Fossae
- Dorsais e cadeias associadas (Tharsis)
- Vulcanismo efusivo dominante e eventualmente explosivo
 - * planícies, planaltos e vulcões de escudo
 - * domos vulcânicos e cones de escórias?
- Vestígios de acções fluviais e eólicas

MARTE

Composição

- Características dos mantos de lava e dos vulcões
 - * rochas de composição basáltica ou andesítica
- Composição dos meteoritos SNC
 - * basaltos ou rochas ultramáficas
- Composição do rególito

alteração de rochas máficas

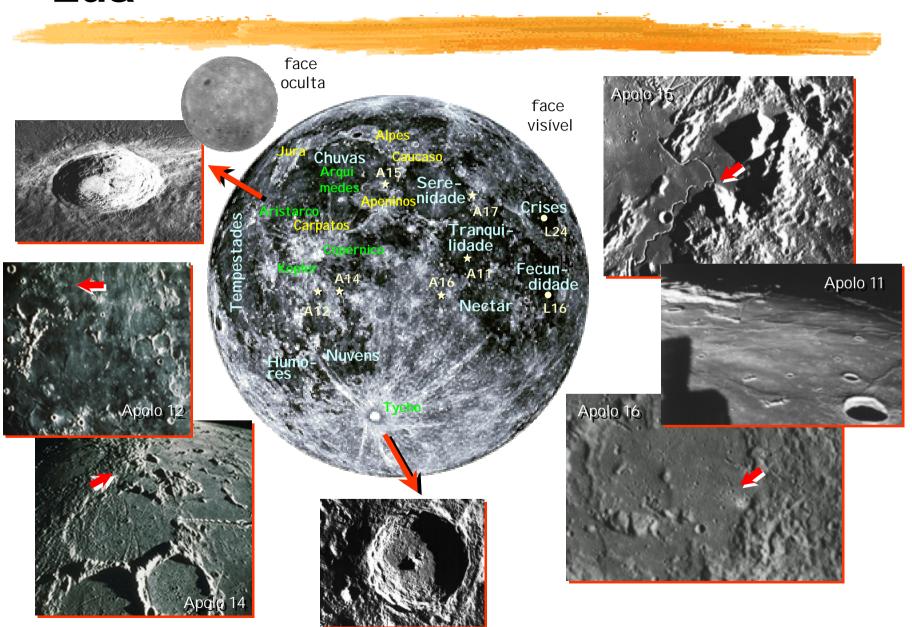
- * rico em Fe₂O₃, MgO e SO₃
- ★ pobre em Al₂O₃ e K₂O
- * argilas ricas em Fe

Estrutura

- gravimetria-compensação por isostasia
 - variação da espessura da crusta com a topografia
- composição e densidade
 - * manto rico em Fe
- extensão do magmatismo paleomagnetismo
 - * convecção no manto
- modelos de condensação
 - * núcleo com FeS e NiS

Crusta	8 a 90 km - silicatada ?		
Manto	rico em Fe		
	com convecção?		
Núcleo	r - 1700 km		

FeS-NiS

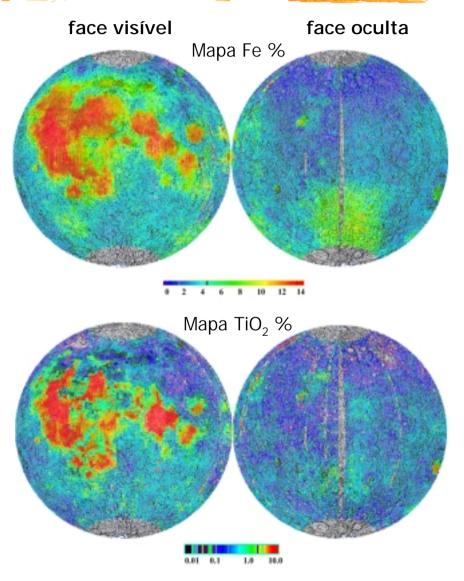

líquido?

crusta

Evolução geológica

- Período Noachiano
 - * terrenos do hemisfério Sul, terrenos caóticos e Valles Marineris
 - início do vulcanismo a sul
- Período Hesperiano
 - * fase principal de vulcanismo Elysium e Tharsis
- Período Amazoniano
 - * vulcanismo em Tharsis e Monte Olympus

Lua

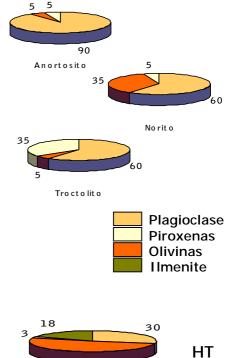


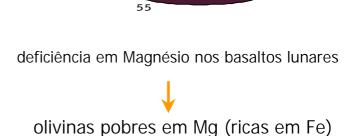
LUA

Composição global

	Condritos CI	Terra Manto	Lua Global	
SiO2	34.2	49.9	43.4	
TiO2	0.11	0.16	0.3	
Al2O3	2.44	3.64	3 a 6	
FeO	35.8	8.0	13.0	
MgO	23.7	35.1	32.0	
CaO	1.89	2.89	4.5	
Na2O	0.98	0.34	0.09	
K2O	0.10	0.02	0.01	
elementos voláteis				
K (ppm)	854	180	83	
Rb (ppm)	3.45	0.55	0.28	
Cs (ppb)	279	18	12	
Rb/Sr	0.3	0.03	0.009	
K/U	60 000	10 000	2 500	

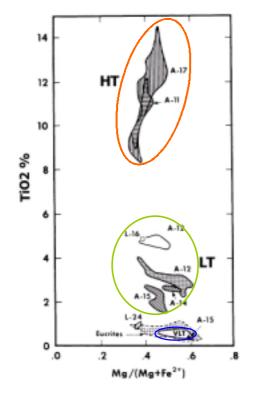
- isótopos de Oxigénio semelhante à Terra
- Ca, Fe e Ti anómalos
- deficiência de elementos voláteis
- Al calculado em função da espessura da crusta
- U (19-30 ppb) dependente do Al ou K

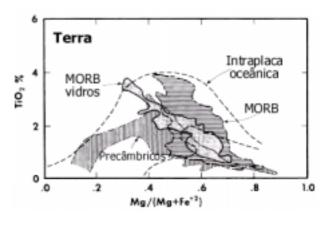

LUA

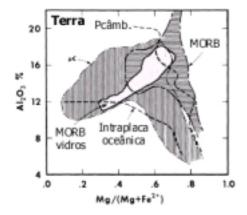

Terrae - gabros

- 🕨 Zona W (A12, A14)
 - * Troctolitos magnesianos
 - * Anortositos alcalinos
 - * Granitos e Granófiros (vidros)
- Zona E (A11, A15, A16, A17)
 - * Anortositos FAN
 - Gabros, Iherzolitos e dunitos
 - Gabronoritos alcalinos
- Imbrium e Procellarum
 - KREEP (K, terras raras e P)

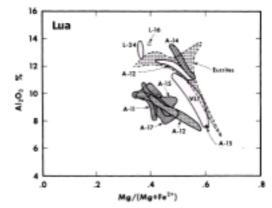
Maria - basaltos

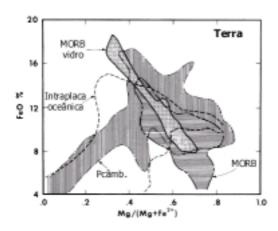

- HT alto teor em TiO₂ (> 8%)
- LT baixo teor em TiO₂ (1.5 5%)
- VLT muito baixo teor em Ti O₂ (< 1.5%)</p>

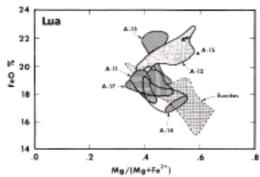



LT

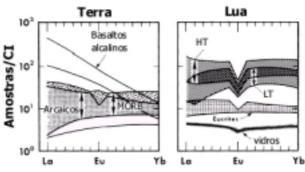
VLT

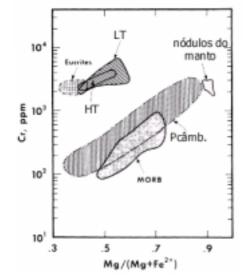






deficiência em Alumínio nos basaltos lunares retenção de Al numa fase aluminosa - crusta lunar?





basaltos lunares mais ricos em Ferro presença de cumulados máficos ?

basaltos lunares com anomalia negativa em Europio diferenciação da crusta (plagioclases)

basaltos lunares mais ricos em Crómio ausência de núcleo?

- Condicionantes geológicas e geoquímicas
 - crusta anortosítica
 - heterogeneidade dos basaltos
 - anomalia em Ferro
 - * oceano de magma
 - * diferenciação da crusta anortosítica rica em plagioclases (flutuação)
 - * concentração de cumulados máficos no oceano de magma (face visível)
 - refusão dos cumulados a diferentes profundidades (diferentes basaltos)
- Plagicilases

 Pinosenas
 Ca, Fe
 Plagicilases
 Pirosenas
 Ca, Fe
 Bimenite
 Olivina
 Pirosenas
 Pirosenas
 Olivina
 Pirosenas
 Pirosenas
 Olivina
 Pirosenas
 Pi
- heterogeneidade na composição da crusta e manto
 - * destruição da crusta anortosítica na face visível (grandes impactos) ?
 - fraccionamento assimétrico do oceano de magma?
 - * manto não homogeneizado?
- padrão do Crómio
 - * presença ou não de núcleo
- padrão de isótopos de Oxigénio
- deficiência em elementos voláteis
- Condicionantes físicas
 - razão mássica Terra/Lua
 - densidade
 - monento angular do sistema Terra/Lua
 - deslocamento do CM em relação ao CF

Oceano de magma

- fusão e diferenciação do planeta?
- fusão da parte superior do manto?

Modelos genéticos

- Captura de um corpo planetesimal
 - * explica a diferença de composição Fe
 - * padrão de isótopos de oxigénio corpo formado na mesma zona do Sistema Solar

Coaccreção

- * não explica a diferença de composição e a deficiência em elementos voláteis
- * improvável a accreção relação mássica Terra/Lua
- * não explica a diminuição do momento angular do sistema

Fissão a partir da Terra

aumento de rotação da Terra devido à diferenciação do núcleo separação de uma porção do manto terrestre

- * explica o padrão de isótopos de oxigénio
- incompatível com os teores de Fe da Lua
- * não explica a diminuição do momento angular do sistema

Colisão com ejecção

impacto de um planetesimal de grandes dimensões volatilização e ejecção de parte do corpo planetário e da parte externa da Terra com posterior accreção

- * pode explicar a diferença de composição Fe
- * explica a deficiência em elementos voláteis da Lua
- * explica as dimensões do núcleo terrestre
- * explica a diminuição do momento angular do sistema

Idades

- anortositos 4.4 a 4.3 Ga
- noritos e troctolitos 4.1 Ga
- brechas com fragmentos de rocha e ejecta 4 a 3.85 Ga
- basaltos dos maria 3.9 a 3.2 Ga
 - ★ basaltos mais antigos (> 3.8 Ga) a SW (A14)
 - * zona E mais antiga do que zona W
 - ★ VLT mais antigos ?
- rególito de diferentes idades (terrae e maria)

Evolução geológica

- Período Pré-Nectariano
 - * Formação do oceano de magma
 - * Diferenciação da crusta anortosítica
 - * Concentração de zonas KREEP K, terras raros e P
- Período Nectariano
 - Intenso bombardeamento e início do magmatismo interno
 - * Formação das grandes depressões
 - Vulcanismo basáltico e preenchimento das depressões existentes - primeiros Maria
- Período Imbriano
 - * Intenso bombardeamento nas Terrae e Maria
 - * Continuação do vulcanismo formação de 2/3 dos Maria
 - * Actividade plutónica nas Terrae
- Período Eratosteniano
 - Implantação dos restantes Maria
 - * Diminuição do vulcanismo e do bombardeamento
- Período Coperniano
 - * Vulcanismo e bombardeamento esporádico